

НОВАЯ классификация простейших (1980) – подцарство Protozoa:

- 1. Тип-Саркомастигофора (25 тыс.видов)
- 2. Тип-Апикомплексы (4800 видов)
- 3. Тип-Микроспоридии (9000 видов)
- Миксоспоридии (875 видов)
- Тип-Инфузории (7500 видов)
- Тип-Лабиринтулы (35 видов)
- Тип-Асцетоспоровые (30 видов)

ПРОСТЕЙШИЕ

Классификации(старая):

Классы:

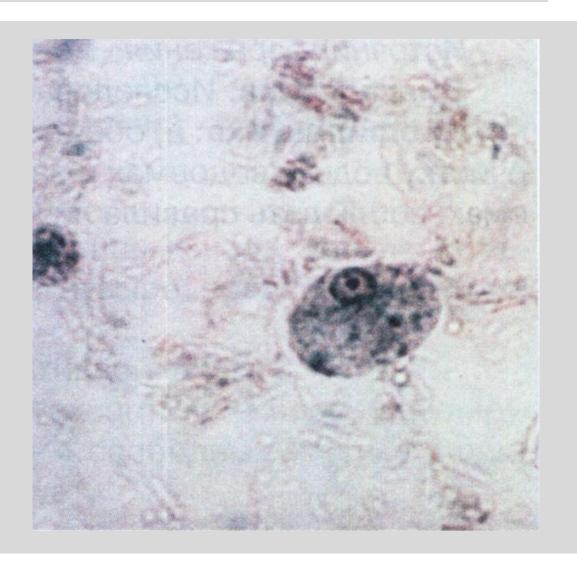
- 1. Саркодовые-Sarcodina
- 2. Жгутиковые-Flagellata
- 3. Ресничные Ciliata, Инфузории
- 4. Споровики-Sporozoa

Подтип Саркодовые три класса:

1. Класс корненожек – Rhizopoda представляет интерес для медицины; в нем различают несколько отрядов, но для нас будет важен отряд амеб— Amoebina

АМЕБЫ непатогенные:

• 1. Амеба ротовая (Entamoeba gingivalis) – распространена повсеместно, вегетативная форма достигает размеров 6-40 мкм, цитоплазма мелковакуолизирована, разделена на два слоя, движения тела замедленные, образует ложноножки. Может быть обнаружена в зубном налете, в карманах десен, в гное при их воспалении, а также в мокроте при расширении бронхов, в гное абсцессов легких и у больных раком легких, при воспалении челюстных костей. Считают, что ротовая амеба отягощает заболевания ротовой полости, но не является их причиной.


У здоровых лиц обнаруживается в 80%-ый случаев, среди стоматологических больных дл 100%-ый случае.

ЦИСТ HET!!! Заражение происходит через посуду, при поцелуях.

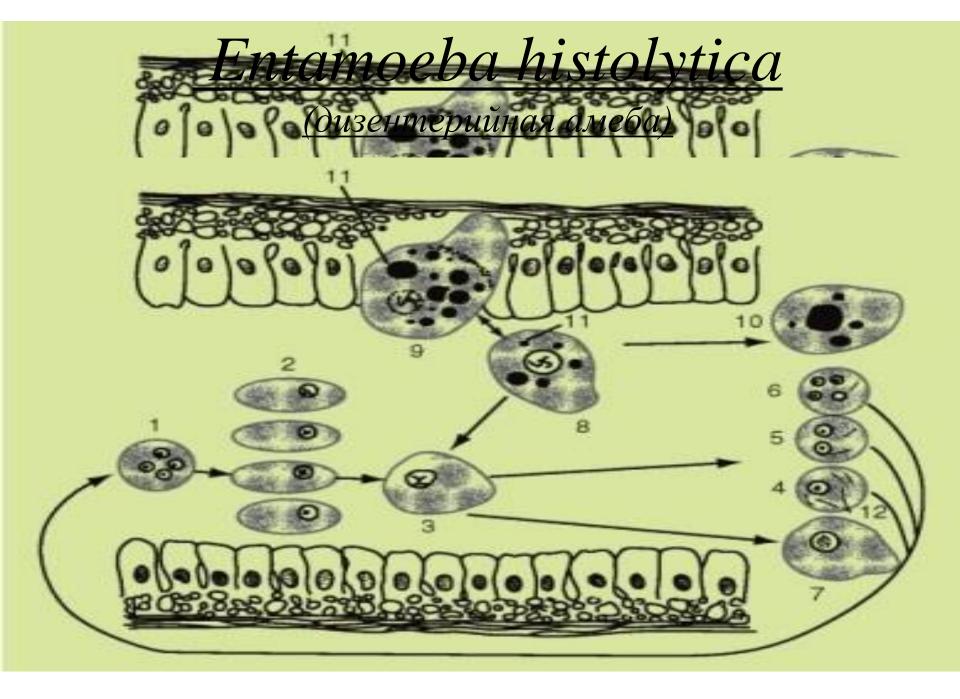
АМЕБА ГАРТМАНА (E. hartmani)

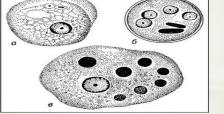
Трофозоит

Е. Hartmani
Небольшое
Ядро, с центральной
Кариосомой и
Периферическим
Хроматином.
Никогда
Не содержит
эритроцитов

АМЕБЫ

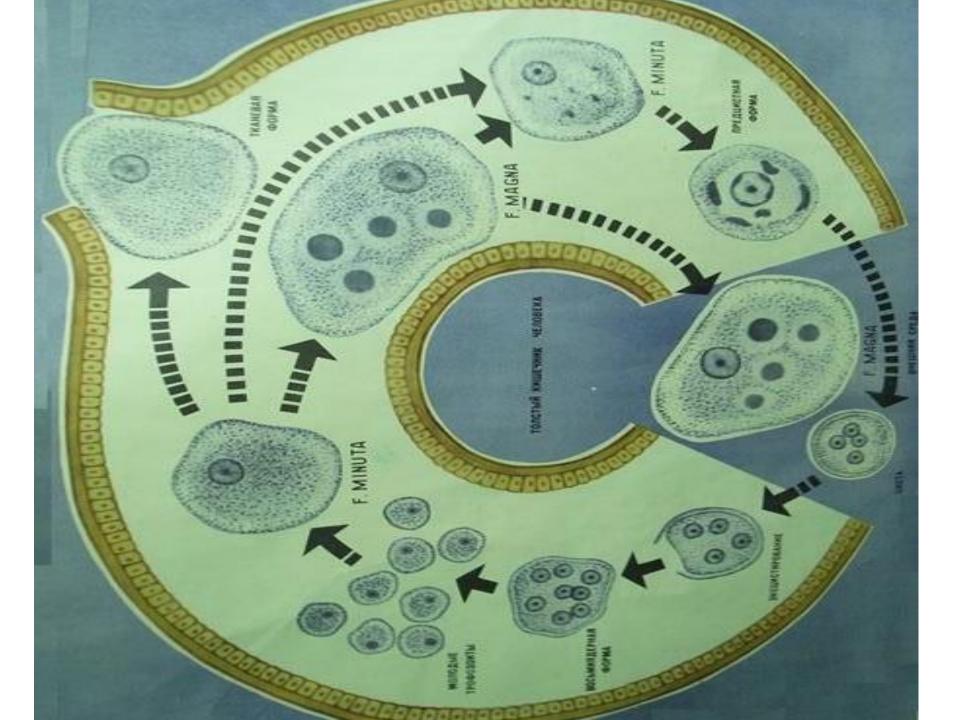
- В лабораторной практике при исследовании кишечного содержимого приходится сталкиваться с более редко встречающимися видами амеб, но имеющих диагностическое значение.
- AMEBA FAPTMAHA (Entamoeba hartmani)
- обнаруживается в среднем у 10%-ый исследуемых.
- Обитает просвет толстой кишки; питается её содержимым; в ткань не внедряется; эритроциты не фагоцитирует.
- Вегетативные формы размером 5-10 мкм, округлые, цитоплазма мелкозерниста, вакуолизирована, движения невидимы.
- **АМЕБА ГАРТМАНА** образует Цисты, они похожи на цисты дизентерийной амебы, но в йодном растворе окрашиваются интенсивнее, что и является отличительным признаком
- ИНОГДА!!! Выявлены случаи носительства гартманелл здоровыми людьми (в носоглотке). Вероятно, эти амебы заносятся в носоглотку грязными руками из почвы, затем по обонятельным нервам проникают в головной мозг, где размножаются в сером веществе.


2. Кишечная амеба (Entamoeba coli) -


обитает в просвете толстой кишки, имеет размеры 20-40 мкм. Ядро пузырьковидной формы. Питается бактериями, остатками пищи, грибками. В ткани хозяина не проникает. По мере продвижения по кишечнику амеба в твердых фекальных массах либо отмирает, либо образует цисту и выводится во внешнюю среду. Циста также крупная по размерам 14-28 мкм, круглая по форме **с числом ядер 8.**

Циста E.coli

- Кишечная
 Амеба,
- Окраска Йодом,
- Циста 8-ми ядерная,
- В данном случае в поле зрения попали
 3 ядра



Патогенная Форма

Entamoeba histolytica –дизентерийная амеба

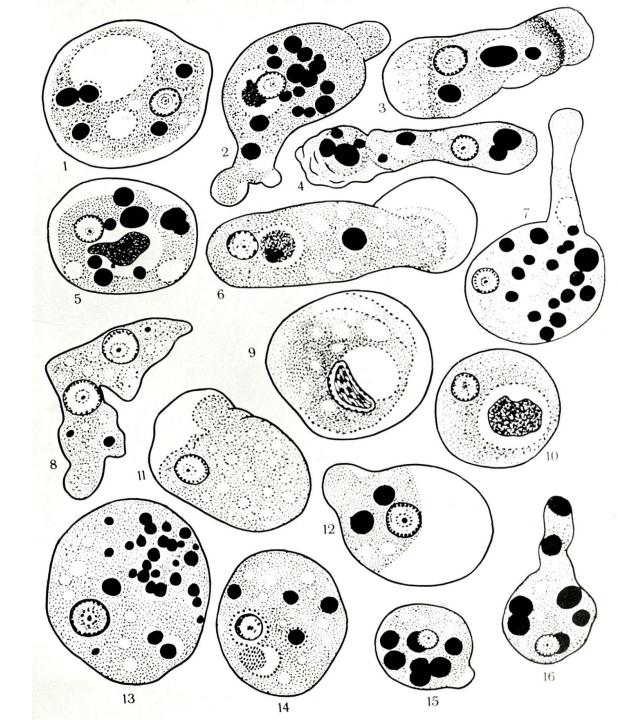
- Entamoeba histolytica возбудитель кишечного и внекишечного амебиаза;
- Географическое распространение повсеместно, что больше в странах с теплыми климатическими условиями;
- Локализация слепая кишка, восходящая, поперечно-ободочная, печень, легкие, кож и др.
- Морфологическая характеристика: 4-е вегетативные формы трофозоит и циста. 1) а
) Мелкая вегетативная форма просветная f-minuta размером 15-20 мкм не патогенна, движение медленное, эктоплазма слабо выражена;
- Тканевая форма размером 20-25 мкм патогенна. Эктоплазма выражена, видны радиально расположенные по периферии в ядре глыбки хроматина, движение активное, быстрое.
- В) Крупная вегетативная форма forma magna размером от 30-40 до 60-80 мкм. Типичный эритрофаг (гематофаг). Растворяет слизистую кишечника, разрушает капилляры, питается кровью, заглатывая эритроциты, образует кровоточащие язвы;
- 4) Предцистная форма -12-20 мкм, цитоплазма не дифференцированна, движения медленные;
- б) Циста округлая с 4-мя ядрами. Незрелые цисты содержат

Основные диагностические различия кишечной (1) и дизентерийной амеб (2)

Признак	Кишечная Амеба (1)	Дизентерийная амеба (2)
Размеры	20-40 мкм (15-35)	Форма minuta-15-25 мкм (просветная форма), Форма magna-27-60 мкм (тканевая форма)
Движения	Замедленные	Ложноножки, импульсивные
Циста размером	14-28 мкм	9-15 мкм
Число ядер цисты	8	4
Форма цисты	Круглая	Овальная, четко сферическая

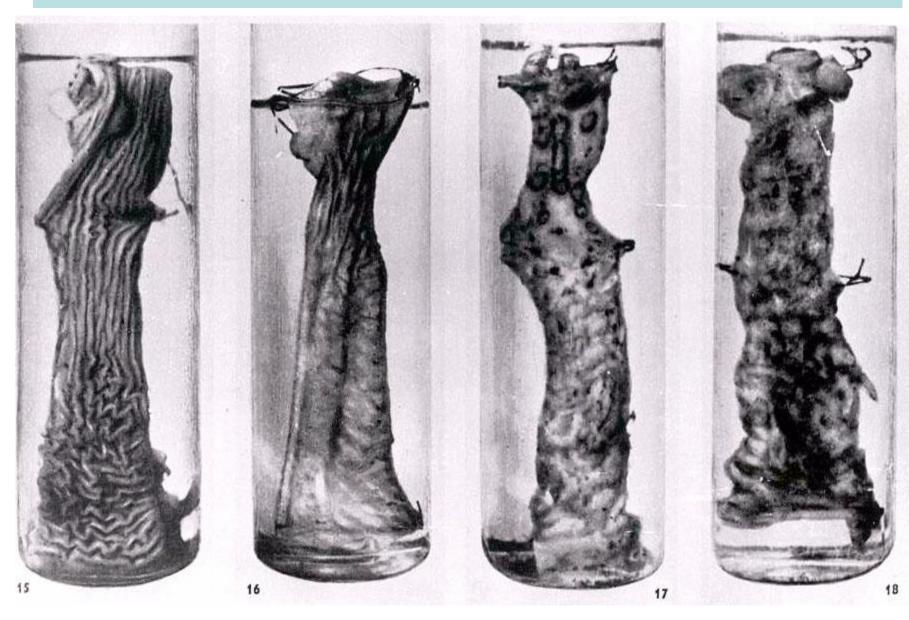
Амебы в нативном свежем препарате

Форма, оболочка	(1) Чаще круглая, оболочка выражена резко	(2) Круглая, реже овальная, оболочка грубая, резко очерченная
Хроматоидны е тела	В виде палочек и глыбок с закругленными краями, на фоне цитоплазмы в виде гомогенных образований	Видны очень редко в виде палочек с заостренными концами
Ядро	Не видно	Иногда видно

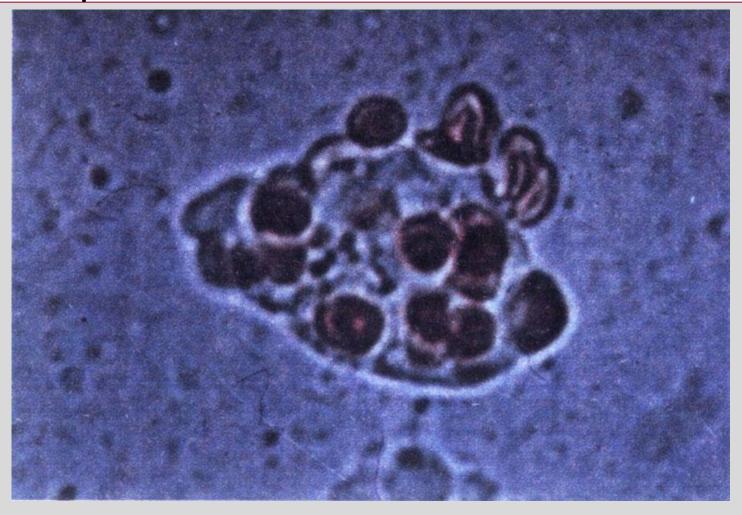

АМЕБЫ В ПРЕПАРАТАХ, ОКРАШЕННЫХ РАСТВОРОМ ЛЮГОЛЯ

ЯДРА	(1) OT 1 ДО 4	(2) OT 1 ДО 8
КАРИОСОМА	В ЦЕНТРЕ, НЕБОЛЬШИХ РАЗМЕРОВ	КРУПНАЯ, НЕПРАВИЛЬНОЙ ФОРМЫ, РАСПОЛОЖЕНА ЭКСЦЕНТРИЧНО
ГЛИКОГЕНОВАЯ ВАКУОЛЬ	СВЕТЛОКОРИЧНЕВАЯ С РАСПЛЫВЧАТЫМИ КОНТУРАМИ, ЛУЧШЕ ВЫРАЖЕНА В МОЛОДЫХ ЦИСТАХ	В ЗРЕЛЫХ ЦИСТАХ ОБЫЧНО ОТСУТСТВУЕТ. У НЕЗРЕЛЫХ – ТЕМНАЯ, С РЕКИМИ ГРАНИЦАМИ

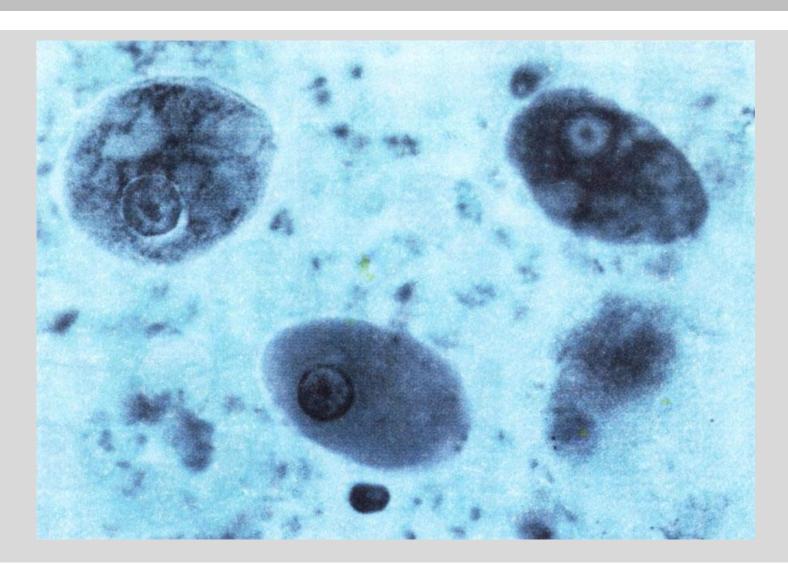
• Разные стадии


Дизентерийной

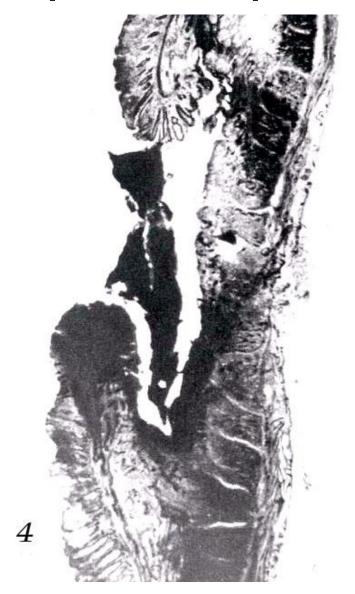
амебы


Поражения кишечника разными видами:

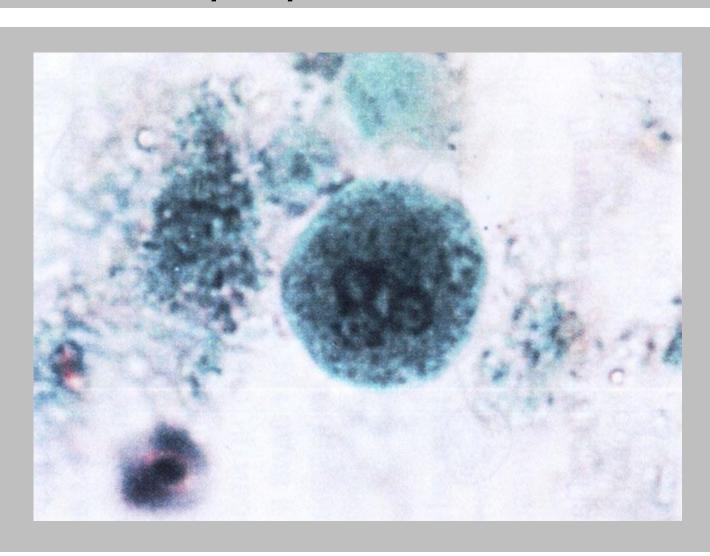
15- **норма,** 16-ДИЗЕНТЕРИЙНОЙ ПАЛОЧКОЙ, 17-18 ДИЗЕНТЕРИЙНОЙ АМЕБОЙ С ОБРАЗОВАНИЕМ ЯЗВ.



Трофозоит Entamoeba histolytica,

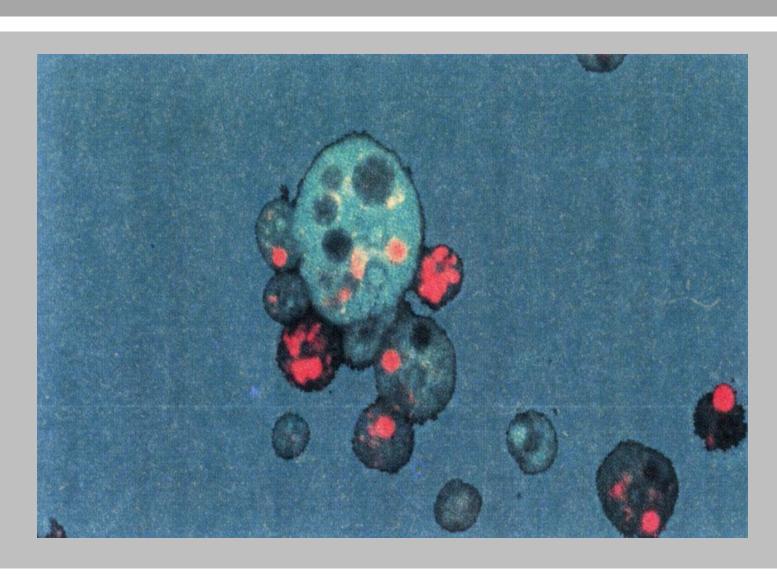

Заглатывающий эритроциты. Окраска йодом. Несколько эритроцитов уже находятся в пищеварительной вакуоли. Поэтому дизентерийную амебу называют типичным гематофагом

Трофозоиты дизентерийной амебы с вакуолизированной цитоплазмой (два вверху) и с четким ядром, в котором виден хроматин (внизу)

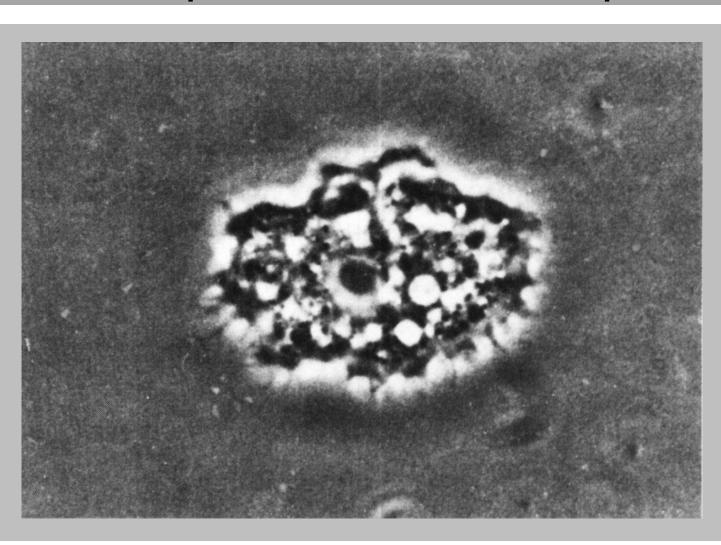


Патанатомия кишечника при дизентерийном амебиазе (язвы, некроз)

Зрелая циста Entamoeba histolytica. Содержит 4 ядра. Хроматоидных телец нет


Naegleria fowleri

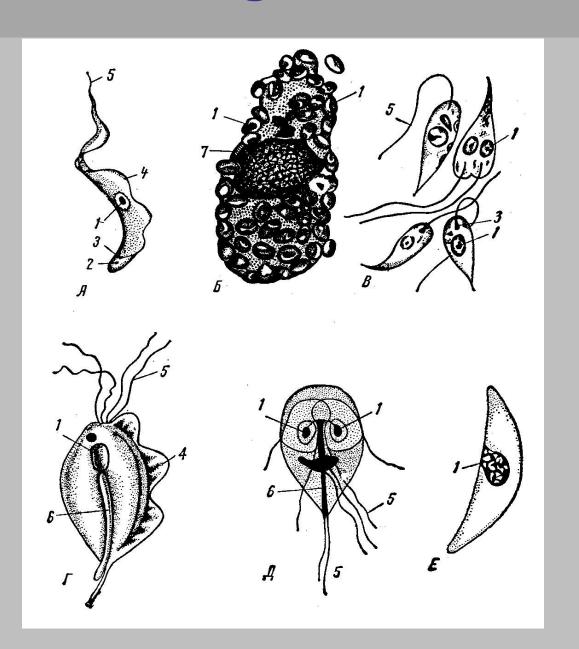
- Впервые в 1948 году Деррик в Новой Гвинеи выявил поражение головного мозга, которое описал как инфекцию свободноживущих амеб Naegleria.
- Цисты очень устойчивы к высушиванию, замораживанию, к дезинфицирующим средствам (хлорированной воде, увлажнителях кондиционерах).
- Первичный амебный менингоэнцефалит зарегистрирован почти во всех континентах земного шара США, Европа, Азия, Австралия, реже Африка, Англия.
- Попадает в организм при купании в грязной воде, через носовую полость проникает в мозговые оболочки, где размножаются и вызывают острый менингоэнцефалит.
- Прогноз летальный исход.
- Наиболее часто поражаются дети!!!


Acantamoeba

- В 1965 году в Австралии впервые были выявлены <u>случаи</u> <u>заболеваний, вызванные свободноживущими, почвенными амебами</u> (сейчас регистрируются в большинстве стран).
- Образует устойчивые цисты, которые попадают в организм через пищеварительный тракт, при вдыхании, через травмированную кожу и роговицу.
- Заболевание проявляется по разному в зависимости от путей проникновения.
- Характерным является образование гранулем, содержащих амеб.
- У ослабленных больных и детей заболевание заканчивается менингоэнцефалитом и смертью.
- !!!!!!Диагностируется только после смерти больных на основе гистологического исследования.

Трофозоиты Acantamoeba sp. Люминисцентная микроскопия, окраска акридином оранжевым, амеба в центре с 2 ядрами

Трофозоит Acantamoeba castellani, фазовоконтрастная микроскопия, имеет филаментообразные псевдоподии и ядро в центре

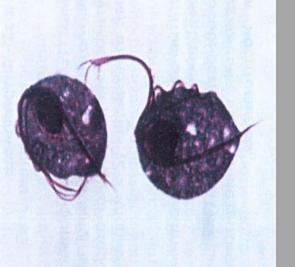


Жгутиковые-Flagellata

- Наиболее приспособившиеся к паразитированию в разных органах и тканях, где жидкая или полужидкая среда (кровь, спинномозговая жидкость, лимфа, слизь, секреты желез и др.)
- 1.Многожгутиковые простой жизненный цикл; распространены повсеместно, не нуждаются в переносчике,
- Некоторые из них условно патогенные.
- 2.ОДНОЖГУТИКОВЫЕ- сложный жизненный цикл;
- имеют обязательного переносчика, активно перемещающегося (мухи, клопы, комары, москиты).
- Человек является распространителем амплифайером.
- Вызывают тяжелые заболевания, некоторые из них заканчиваются смертью (трипаносомоз).

Жгутиковые-Flagellata

- А-трипаносома,
- Б- лейшмании (безжгутиковые),
- В-лейшмании (жгутиковые из культуры Ткани),
- Г-трихомонада,
- Д-лямблия,



Жгутиковые-Flagellata

- Trichomonas hominis (трихомонада кишечная):
- Встречается повсеместно больных с кишечными заболеваниями, хотя болезнетворное влияние трихомонады не доказано;
- Имеет ундулирующую мембрану и 3-5 жгутиков;
- Передвигаются толчками, быстро погибают при высыхании мазка;
- Цист не образует.

Трихомонада ротовая

- Trichomonas tenax (elongata):
- Встречается в зубном налете, в карманах десен до 35% наряду с ротовой амебой;
- Цист не образует;
- Размерами меньше кишечной трихомонады;
- Передается при поцелуях, через посуду

Трихомонада урогенитальная

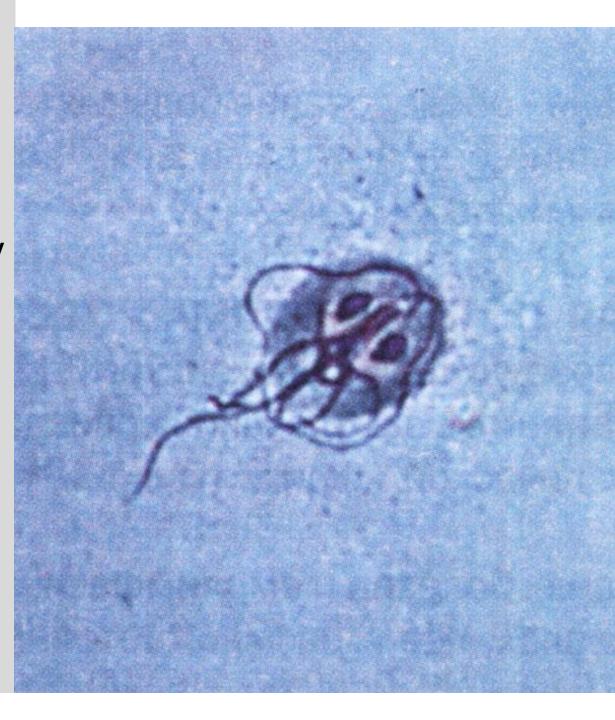
Trichomonas vaginalis:

- Встречается у женщин и мужчин;
- Распространена повсеместно, у женщин, чаще гинекологически больных 88%; у мужчин при заболеваниях предстательной железы и уретры 20%;
- Самая крупная из трихомонад по размерам достигает до 30 мкм;
- Имеет 4 жгутика и ундулирующую мембрану, которая тянется от переднего конца тела до 2/3 его длины, свободный конец имеет краевую фибриллу;
- По всему телу залегает осевая нить на заднем конце с острым шипиком.
- Путь передачи половой
- ДS в каплях гноя либо слизи есть трихомонады (в моче гнойные нити).

Лямблия

(Lamblia intestinalis)

Обитает в тонкой кишке, Обнаруживается иногда в желч.ходах печени, дуоденуме;


Распространена повсеместно, особенно у детей в детских учреждениях до 60%;

По данным ВОЗ

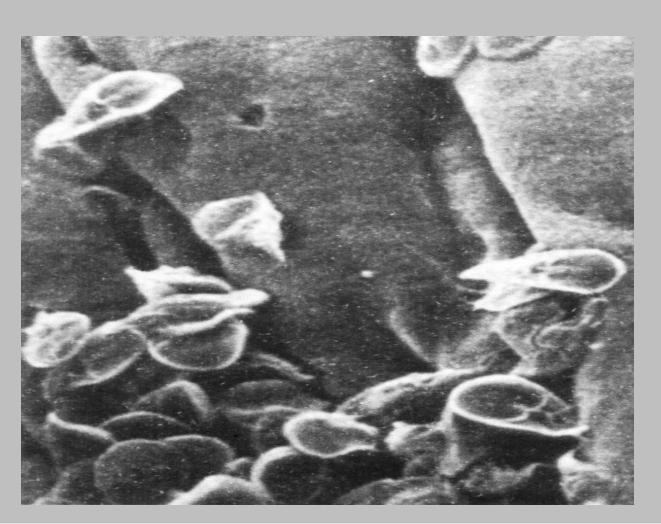
Каждый пятый лямблионоситель;

Вегетативная форма грушевидной формы с присасывательным диском в расширенной части;

Образует цисты правильной овальной формы с четкой двухконтурной оболочкой

Хиломастикс - Chilomastix mesnili

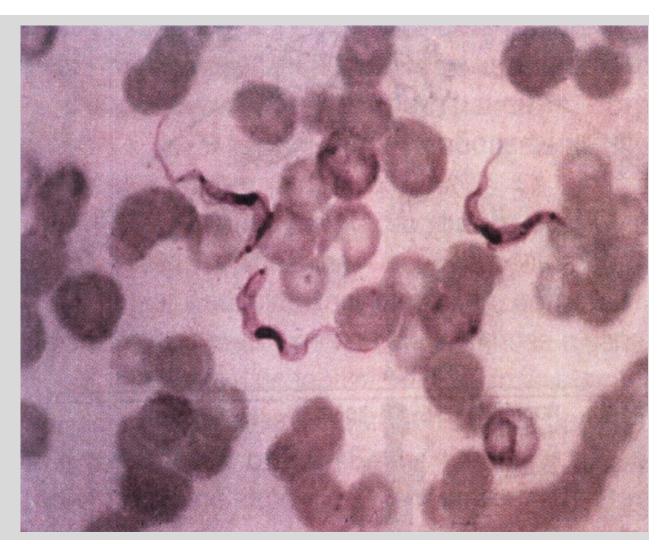
- Тело жгутиконосца грушевидной формы, перекрученное по сои. Задний конец тела заострен. Длина 7-20 мкм. (в среднем 13 мкм.) На переднем конце 4 жгута, три направлены кпереди в расширенной части и один назад; Движение поступательное, упорядоченное, замедленное.
- Цисты. Обитают в толстом кишечнике, их размер 6-9 мкм;
- в йодном растворе цисты окрашены в желтый, светло-зеленый, иногда зеленоватый цвет. Эти признаки позволяют легко распознать этого жгутиконосца
- Диагностический признак от других.
- Более крупные размеры
- На заднем конце нет шипика заострения;
- Ундулирующей мембраны нет!!!
- Циста имеет характерную форму кувшинчика;
- Хиломастикс обнаруживается в жидких испражнениях в больших количествах


Трофозоит (Lamblia intestinalis), сканирующая электронная микроскопия, видны очертания присасывательных дисков.

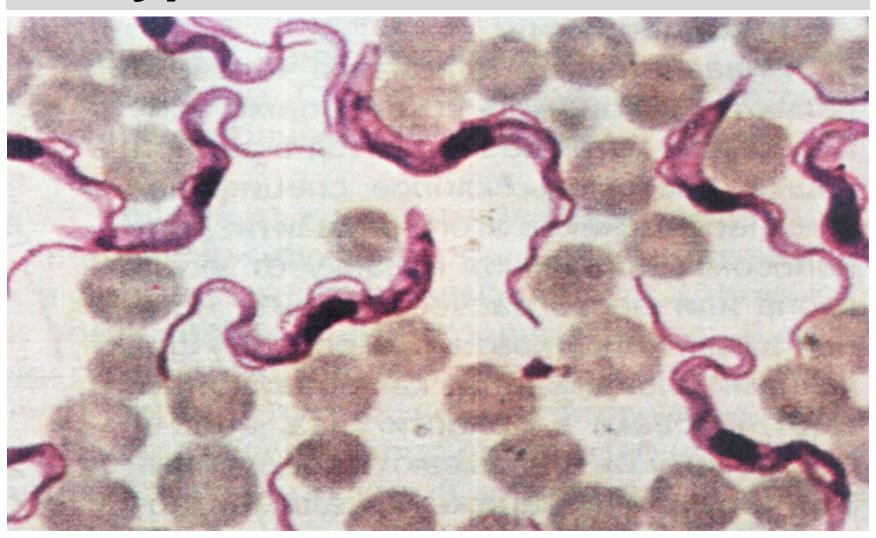
лямблии

Трофозоит (Lamblia intestinalis) на поверхности слизистой оболочки кишечника, сканирующая электронная микроскопия

лямблии



ТРИПАНОСОМЫ


- Встречаются чаще других три вида:
- 1. Trypanosoma rhodesiense
- 2. Trypanosoma gambiense
- 3. Trypanosoma cruzi
- Первые два вида вызывают африканский трипаносомоз сонную болезнь;
- Третий вид американский трипаносомоз болезнь Шагаса (или Чагаса).

ТРИПАНОСОМЫ (одножгутиковые простейшие)

ТРИП СРЕДИ ЭРИТРОЦИТОВ

Кровяные трипомастиготы Trypanosoma rhodesiense

Трипаносомы, вызывающие сонную болезнь

1. Trypanosoma brucei gambiense

- возбудитель гамбийского типа трипаносомоза;
- антропоноз источником инвазии служит человек, дополнительный резервуар свиньи;
- переносчиком является муха це-це Glossina palpalis
- встречается в Западной Африке; ежегодно до 10 000 новых случаев заражения;
- локализуется в крови, спиномозговой жидкости, серозных полостях;отличить морфологию этих трипаносом сложно.
- 2.Trypanosoma rhodesiens возбудитель родезийского типа трипаносомоза;
- зооноз источник заражения антилоп и носорогов (к человеку попадает реже, в основном заболевают это охотники, туристы, сезонные рабочие, до 1500 случаев в год);
- переносчиком является муха Glossina morsitans;
- встречается в Восточной и Юго-Восточной Африке;
- локализуется в лимфе, крови.

Trypanosoma cruzi

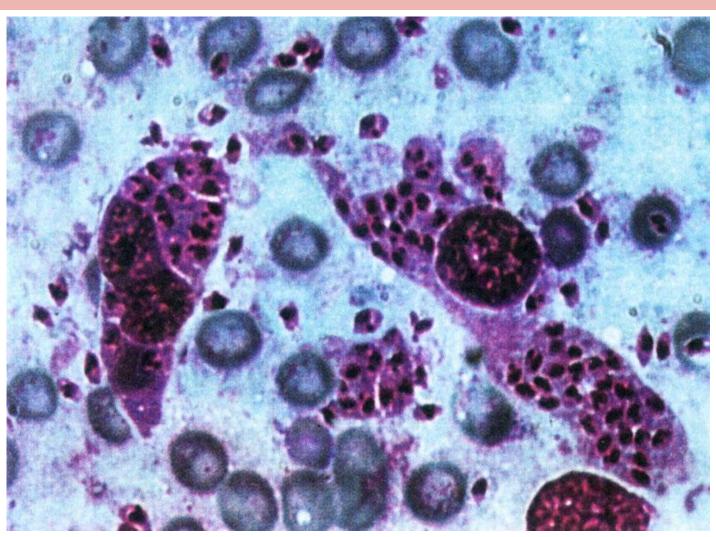
- ундулирующей мембраны нет. При окраске по Романовскому –Гимза: протоплазма – голубая, ядро кинетопласт и жгутик - розовые.

• Американский трипаносомоз

- Переносчиком возбудителя являются <u>ПОЦЕЛУЙНЫЕ КЛОПЫ.</u> Они кусают ночью в красную кайму губ. Будучи однократно зараженными триатомовые клопы сохраняют трипаносом в течение всей жизни;
- Трансовариальной передачи возбудителя у клопов нет;
- В природных очагах резервуарами возбудителя служат броненосцы (сами не болеют), опоссумы (имеют высокий индекс паразитемии), муравьеды, лисы, обезьяны...
- В Боливии и Перу население держит дома морские свинки для употребления в пищу, а они служат резервуаром трипаносом, их естественная зараженность 25-60%;
- Заболевание распространено и встречается во всех странах американского континента в латиноамериканских странах;
- Риск заражения 35 млн. человек; инвазировано 7 млн.
- ДЅ ставится на основании обнаружения трипаносом в лимфе пунктата лимфатических узлов, в крови и др.

Trypanosoma cruzi (типичная кольцевидная С -форма)

Mott- клетки (морулообразные, крупные)

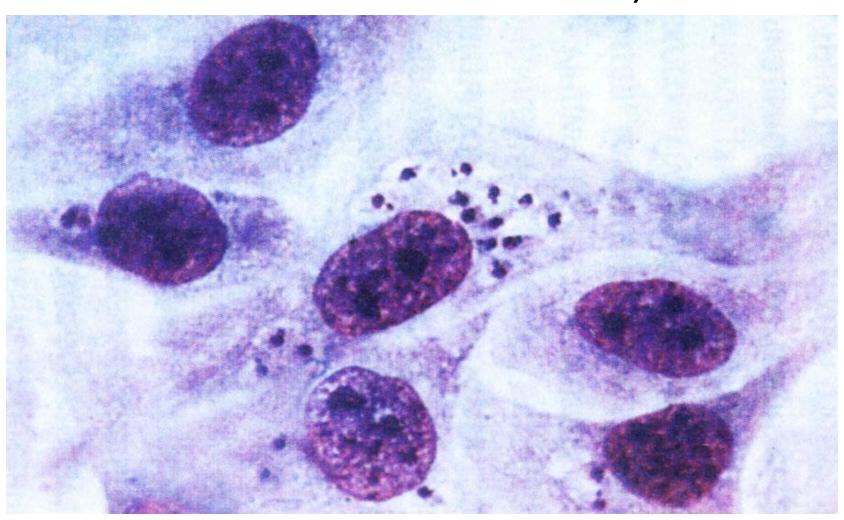

Характерные для поздней стадии Сонной болезни обнаруживаются в спинно-мозговой Жидкости Окраска по Романовскому-Гимза.

Лейшмании

- L.tropica вызывает у человека кожный лейшманиоз Старого Света;
- L.donovani поражает внутренние органы и вызывает висцеральный лейшманиоз; лейшмании названы в честь английских ученых
- Лейшман и Донован 1903 год.
- L.brasiliensis кожно-слизистый (американский лейшманиоз);
- Различают две основные географические формы: висцеральный лейшманиоз средиземноморского типа; индийский кала-азар (лихорадка дум-дум, черная болень)

Амастиготы L.donovani в макрофагах печени

Морфофункциональная характеристика лейшманий


- Лейшмании проходят две стадии развития:
- Безжгутиковая форма имеет овальное тело длиной 2-6 мкм. Ядро округлое, занимает 1/3 клетки. Рядом с ним в виде короткой палочки находится кинетопласт.
- При окраске по Романовскому-Гимза цитоплазма лейшманий голубая или голубовато-сиреневая, ядро красно-фиолетовое, кинетопласт окрашивается более интенсивно, чем ядро. Лейшмании на этой неподвижны, жгутиков не имеют. Они встречаются в теле позвоночного хозяина.
- Паразитируют внутриклеточно в макрофагах, клетках головного мозга, селезенке, печени.
- В одной пораженной клетке может содержаться до до

Морфофункциональная характеристика лейшманий

- Жгутиковая форма подвижная, имеет жгутик. Форма тела удлиненная, веретеновидная, длиной до 10-20 мкм, а длина жгута 15-20 мкм. Деление продольное. Развивается в теле беспозвоночного хозяина-переносчика (москита).
- В культуре на питательных средах также развиваются жгутиковые формы лейшманий.

Амастиготы L.mexicana

(L.mexicana- возбудитель кожного мексиканского лейшманиоза)

Лейшманиоз городской тип болезнь Боровского

 Кожный лейшманиоз

Болезнь
Боровского –
Лейшманиоз
Сельский
тип:

Язвы Обширные; Не глубокие; Течение острое

Цикл развития лейшманий

- Лейшмании, паразитируя в организме у человека и некоторых животных (собаки, грызуны) могут находится в крови и в коже. Москиты, мелкие кровососущие насекомые, питаясь на больных людях или животных, заражаются лейшманиями.
- В первые сутки заглоченные паразиты превращаются в подвижные формы, начинают размножаться и спустя 6-8 дней скапливаются в глотке москита.
- При укусе человека зараженным москитом подвижные лейшмании из его глотки проникают в ранку и затем внедряются в клетки кожи или внутренних органов, превращаясь в безжгутиковые формы.

Амастиготы L.brasiliensis

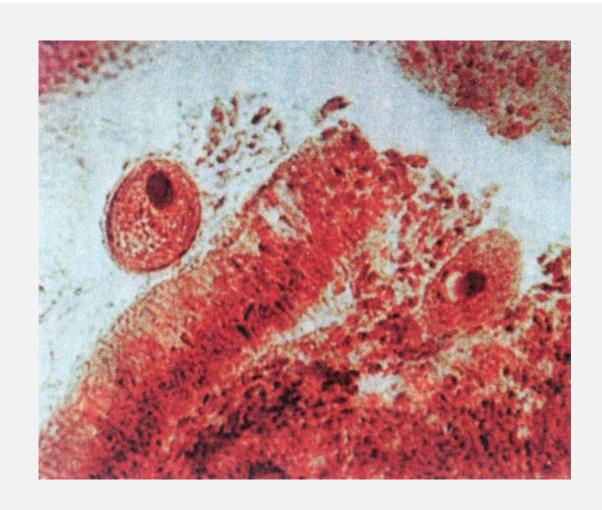
• в мазке содержимого из кожной язвы

Промастиготы L.tropica в культуре

• Хорошо видны жгутики лейшманий

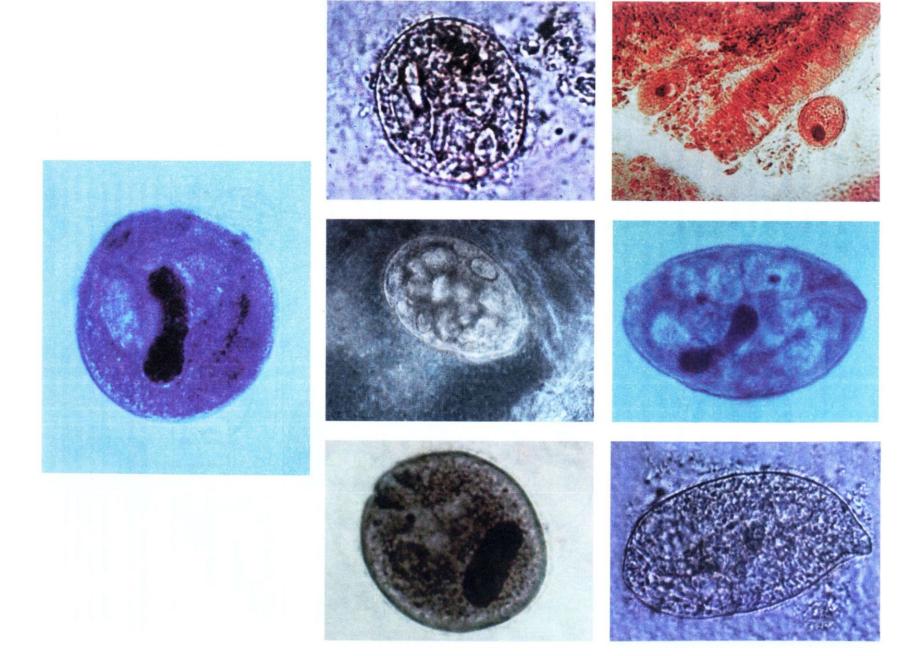
Диагностика лейшманиоза

- 1) Обнаружение лейшманий в материале, полученном из бугорков со дна язв и краевого инфильтрата (где обычно большое количество возбудителей)
- 2) Возможно использование биопробы на белых мышах или хомяках:
- 3) Получение культуры лейшманий.
- Дифференциальный диагноз проводят с эпителиомами, лепрой, сифилисом, тропическими язвами
- Диагноз основывается на клинической картине заболевания с учетом эпидемиологических данных.


Амастигота L.tropica

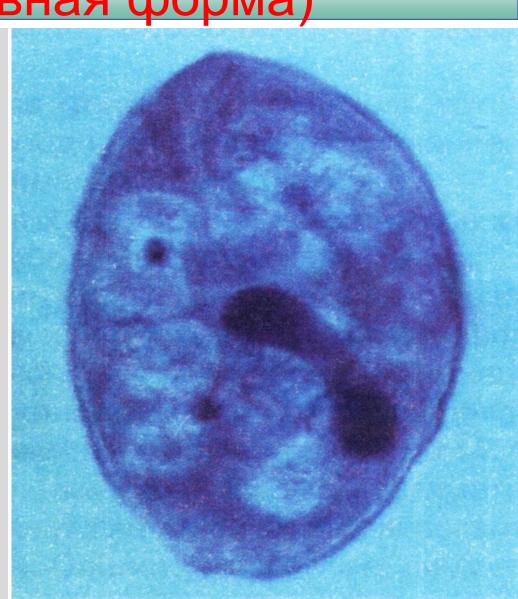
• электронная микроскопия, видны 4 паразита

инфузории


Балантидии в кишечнике

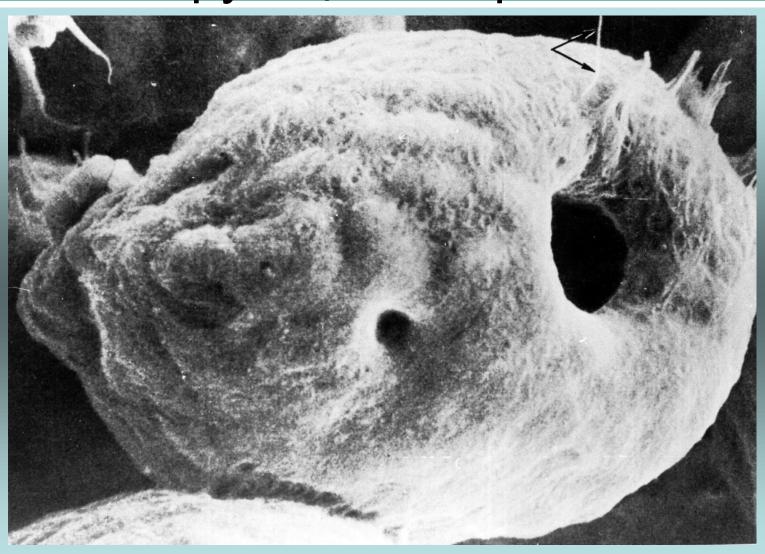
Балантидии

Балантидия кишечная (Balantidium coli)


- Самый крупный из простейших паразит человека. Балантидии в большей степени в южных районах, но спорадически выявляются повсеместно и распространены там, где развито свиноводство, включая и фермы и частное хозяйство.
- Вегетативная форма вытянутая, чаще яйцевидная. Длина 30-150 мкм, ширина 20-110 мкм.
- Активно двигаются с помощью ресничек, нередко вращаясь вокруг своей оси.
- Питаются различными пищевыми частицами, включая бактерии, грибки, форменные элементы крови.
- Цитоплазма содержит пищеварительные и две пульсирующие (выделительные) вакуоли.
- Ядро макронуклеус у живых балантидий часто видимо и без окраски в виде светлого пузырька бобовидной формы.
- Циста округлая с толстой оболочкой. Размер её 50-70 мкм.
- Цитоплазма цисты однородна.

Балантидий (вегетативная форма)

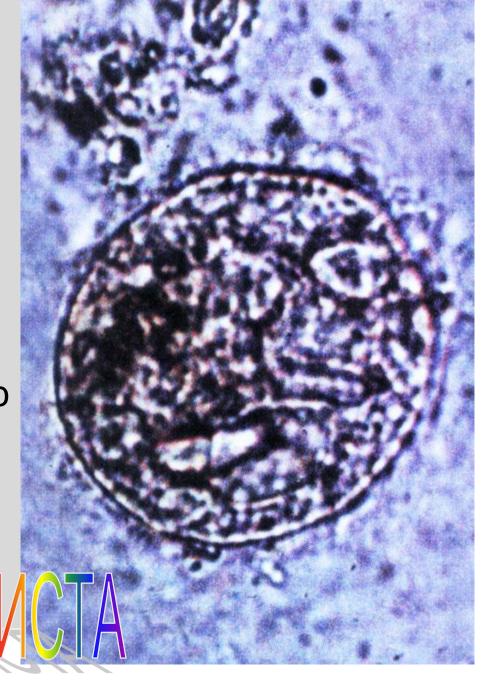
- Для обнаружения балантидий каплю свежевыделенных испражнений помещают в физиологический раствор на предметном стекле и смотрят под малым увеличением микроскопа. Балантидии обычно хорошо видны:
- Крупные размеры,
- Активное движение.
- Балантидии выделяются периодически !!!
- Поэтому необходимо при отрицательном результате анализ сдавать несколько раз,


в некоторых случаях приходится назначать солевое слабительное

Жизненный цикл балантидий

- Обитают в кишечнике свиней, для которых не патогенны.
- С испражнениями свиней цисты выходят во внешнюю среду и инвазируют её:
- 1) попадают в воду со стоками дождей, снега;
- 2) переносятся активными насекомыми, чаще мухами, в жилые помещения человека и попадают на пищу;
- 3) загрязняются руки при работе на свинофермах или дома при уходе за свиньями;
- 4) могут разноситься с грязью на подошвах обуви;
- 5) животные могут цеплять на шерсть цисты и разносить
- повсеместно.

Балантидия сканирующая микроскопия

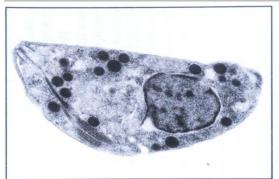


Признаки балантидиоза: боли в животе, понос, рвота, головные боли, недомогание, утомляемость, слабость. В испражнениях- слизь, кровь, специфический запах

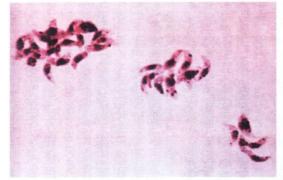
 Трофозоит балантидия в фекалиях больного

При не соблюдении правил личной гигиены человек заражается алиментарным путем (через рот). Попадая в толстый кишечник, балантидию превращаются в вегетативную форму, размножаются и могут внедряться в слизистую оболочку кишечника, образуя воспалительноязвенный процесс.

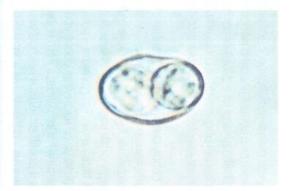
Живой трофозоит B.coli

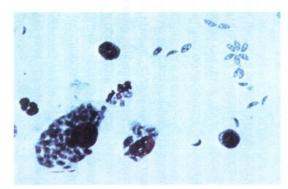

- Из
 пищеварительного
 тракта свиньи.
 Клетка
 вакуолизирована.
- В верхней части виден ореол из ресничек

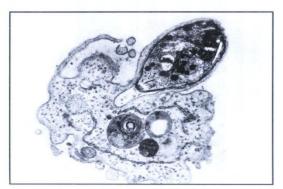
Балантидии в кишечнике



Класс споровики







ТОКСОПЛАЗМА Toxoplasma gondii

Возбудитель токсоплазмоза Toxoplasma gondii относится к подцарству Protozoa, типу Apicomplexa, классу Sporozoa, подклассу Coccidia, отряду Eucoccidiida, подотряду Eimerina.

Тип Protozoa Класс Sporozoa Toxoplasma gondii Ядро 2. Коноил 3. Роптрии Митохондрии 5. **ЭПС** 6. Микропора

Токсоплазмы — условно-патогенные простейшие с внутриклеточным образом паразитирования, распространены на всех материках, в странах с различными климато-географическими условиями. Это можно объяснить наличием широкого круга хозяев среди сотен видов млекопитающих и птиц, а способностью возбудителя паразитировать в клетках тканей фактически всех органов.

Циркуляцию токсоплазм в природе обеспечивают два хозяина— окончательный и промежуточный.

Окончательными хозяевами — хранителями возбудителя в природе, у которых идет половой процесс развития (кишечная фаза), являются представители семейства кошачьих (Felidae), в дикой природе — это дикая кошка, снежный барс, рысь, ягуар, оцелот, бенгальский тигр, в синантропном очаге — домашняя кошка, которая по эпидемиологическому значению стала в центр проблемы, как важный для человека источник инфекции.

промежуточные хозяева

• Бесполое развитие токсоплазм (внекишечная, тканевая фаза) проходит в органах промежуточных хозяев: домашних животных и диких млекопитающих, птиц и человека.

Кишечная стадия обуславливается развитием паразита, которое проходит в слизистой кишечника окончательно хозяина. Таковым хозяином являются практически все представители кошачьих, не исключая и домашних кошен Жизненный цикл токсоплазмы делится на четыре этапа 1.Шизогонию – процесс деления клетки, относящийся к размножению простейших организм споровым способом: многократное деление ядра

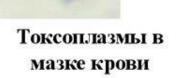
2. <u>Эндодиогению</u> (внутреннее почкование) – способ размножения простейших микроорганизмов, которь заключается в образовании двух новых организмов

клетки и дальнейшее разделение *на мерозоиты*

(множественные дочерние клетки).

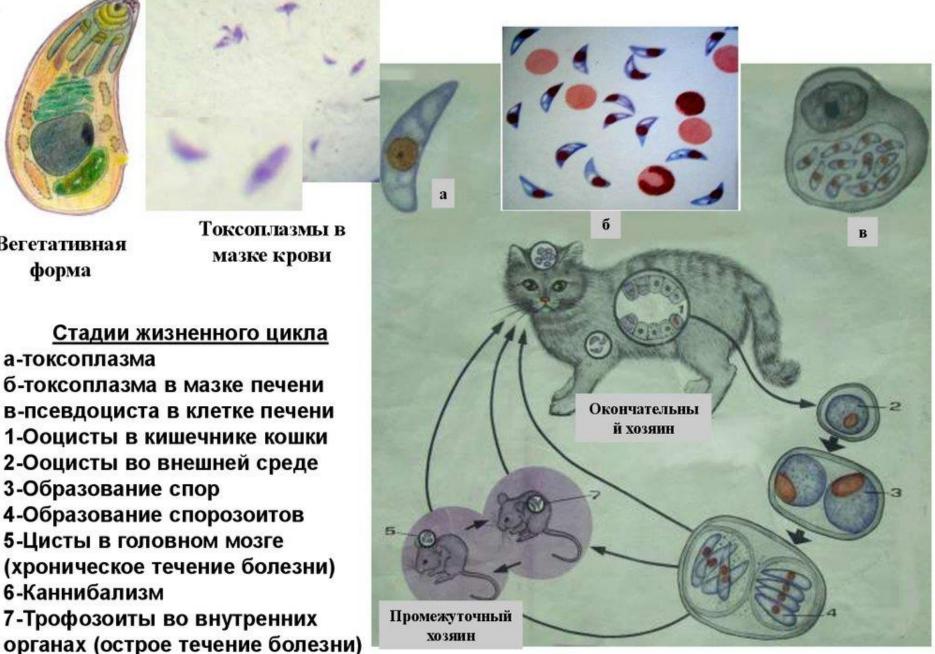
заключается в образовании двух новых организмов под оболочкой материнской клетки.

- 3. <u>Гаметогонию</u> половое размножение у организмов, представленное слиянием различных гамет одного или различных простейших.
- **4.** <u>Спорогонию</u> процесс деления, образовавшейся в результате слияния половых особей зиготы
- Такие этапы как <u>гаметогония</u>, <u>шизогония и начальная</u> <u>стадия спорогонии</u> проходит непосредственно в кишечнике окончательного хозяина, которым является один из представителей кошачьих. Завершение этапа спорогонии заканчивается вне кишечника во внешней экологической среде.
- Эндодиогения же протекает в организме как основного так и промежуточного хозяина, каковым и может быть человек.


Цикл развития в окончательном хозяине (в организме кошачьих)

Токсоплазма – Toxoplasma gondii

Вегетативная форма


6-Каннибализм

а-токсоплазма б-токсоплазма в мазке печени в-псевдоциста в клетке печени 1-Ооцисты в кишечнике кошки 2-Ооцисты во внешней среде 3-Образование спор 4-Образование спорозоитов 5-Цисты в головном мозге (хроническое течение болезни)

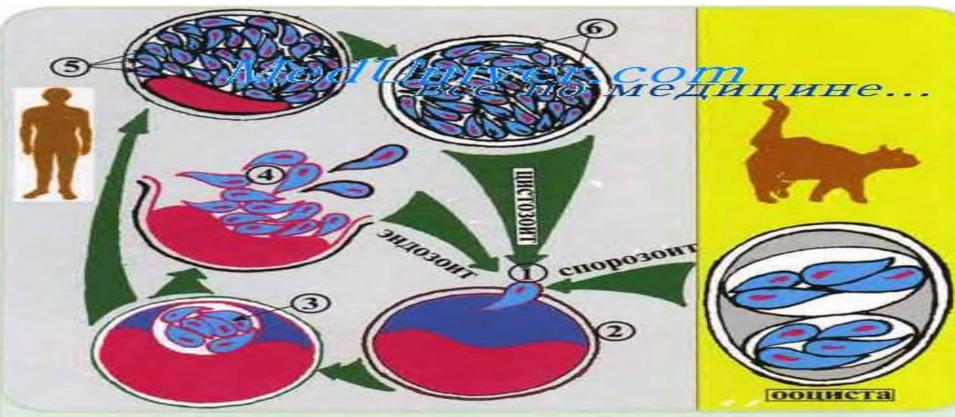
7-Трофозоиты во внутренних

Стадии жизненного цикла

Кошка обычно заражается токсоплазмозом после того как съела инфицированного грызуна или сырое мясо. Трофозоиты (Эндозоиты), попавшие в ее организм, через пищеварительную систему попадают в эпителиальные клетки слизистой ткани. Здесь и проходит шизогония, вследствие которой развиваются мерозоиты, которые формируются уже как микрогаметы (мужские «особи») и макрогаметы (женские половые клетки). После слияния разнополых гамет получается новообразование, такое как ооцисты, снабженные жесткой защитной оболочкой.

В такой форме токсоплазма с калом кошки может уже выходить во внешнюю среду для дальнейшего распространения.

Во внешней в каждой ооцисте созревают две пары спорозоитов (инвазионная стадия) и готова к


(инвазионная стадия) и готова к дальнейшему заражению окружающих организмов.

• В промежуточном хозяине (в том числе и человеке)

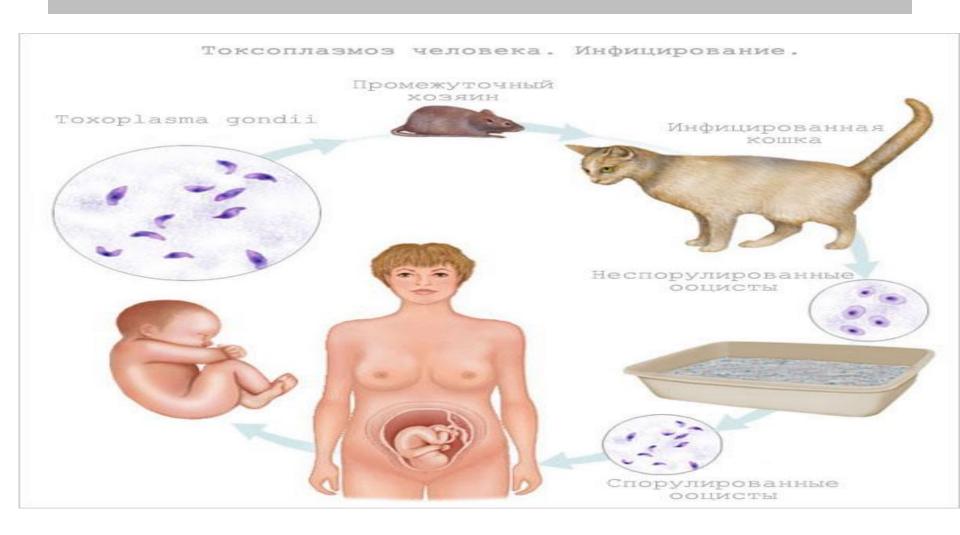
- Заражение человека возможно тремя способами:
- 1) Ооцистами со спорозоитами перорально при не соблюдении правил личной гигиены;
- 2) Алиментарно при употреблении в пищу сырых мясных и куринных фаршей, сырых куринных яиц, не кипяченного молока;
- 3) Трансплацентарно (через плаценту от матери к ребенку)

Ооцисты в инвазионной стадия токсоплазмы больной может получить вследствие немытых или плохо обработанных овощей и фруктов, а также пренебрежения к правилам гигиены (мытья рук перед потреблением любых продуктов питания). Если же возбудитель токсоплазмоза попал в организм человека вследствие переливания трансплантации органов, посредством плохо обработанной пищи, не прошедших термическую обработку молочных продуктов и так далее, то инвазия будет спровоцирована настоящими цистами и эндозоитами

Бесполое размножение в организме человека

Рис. 5.28. Бесполое размножение токсоплазм в организм человека или другого промежуточного хозяина:

1 — проникновение в клетку хозяина (2) эндозоита, цисто зоита или спорозоита (спорозоиты выходят из созревшей ооцисты, содержащей две спороцисты со спорозоитами); 2 — клетка хозяина; 3 — скопление эндозоитов в парази тарной вакуоле; 4 — выход эндозоитов из разорвавшейскиетки хозяина; 5 — цистозоиты во внутриклеточной цисте; 6 — цистозоиты во внутриклеточной цисте.


В промежуточном хозяине, током лимфы и крови разносится по всему организму, где и происходит дальнейшее бесполое размножение, которое протекает внутри клеток где образуются трофозоиты с оболочкой и формируют псевдоцисты. Окутывающие цисты мембраны разрываются и трофозоиты получают возможность проникать в соседние клетки

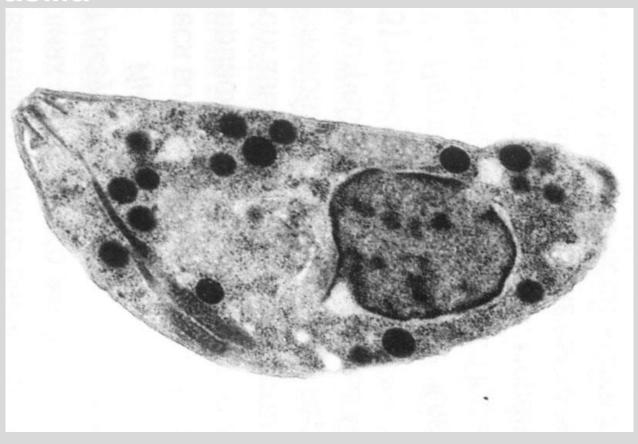
В острой стадии токсоплазмоза в инфицированных клетках образуются псевдоцисты в виде скоплений токсоплазм. При их разрушении паразиты инвазируют соседние клетки, и происходит повторение цикла. Паразитемия развивается только в острой стадии.

<u>хронических процессах</u>возбудитель токсоплазмоза образует истинные цисты с плотной оболочкой (средний размер 100 мкм). Каждая циста более сотни паразитов (брадизбиты), расположенных так плотно, что на препаратах видны одни организме цисты сохраняются годами десятилетиями. Эта фаза конечная для токсоплазмоза в организме всех животных, исключая хозяина, в котором завершается окончательного жизненный

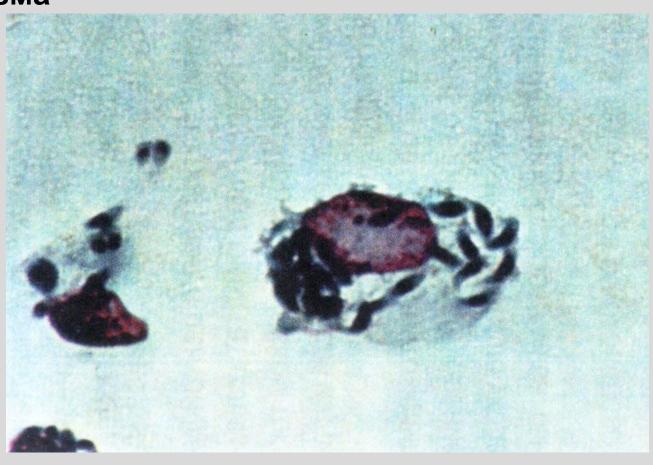
Врожденный токсоплазмоз

Врожденный токсоплазмоз

Гидроцефалия


Трофозоиты T.gondi (тахизоиты)

В клетках перитонеальной жидкости мыши


Трофозоит T.gondi электронная микроскопия

• токсоплазма

Эндозоиты T.gondi в лейкоците


токсоплазма

Цикл развития T.gondi

- <u>Окончательный хозяин</u> семейство кошачьих (чаще домашние кошки)
- В организме кошек происходит сложная серия делений путем <u>шизогонии</u>
- В тканях кошки вслед за этим последовательно происходит:
- Гаметогония (деление), оплодотворение и спорогония (деление) в клетках кишечника
- В фекалиях больного животного можно обнаружить ооцисты.
- <u>Промежуточный хозяин</u> мышевидные грызуны, человек, млекопитающие, птицы, пресмыкающиеся

Окончательный хозяин токсоплазмы - кошки

Инвазионная форма

- Инвазионными считаются <u>зрелые спороцисты со спорозоитами</u>, находящимися во внешней среде и распространяемые кошками, а также <u>все стадии</u> <u>бесполого размножения</u>, происходящего в тканях промежуточных хозяев;
- Кошки заражаются ооцистами, поедая мышей, в организме которых содержатся тахизоиты и брадизоиты.
- Заражение человека возможно тремя способами:
- 1) Ооцистами перорально при не соблюдении правил личной гигиены;
- 2) Алиментарно при употреблении в пищу сырых мясных и куринных фаршей, сырых куринных яиц, не кипяченного молока;
- 3) Трансплацентарно (через плаценту от матери к ребенку)

- Все зависит от того, какой орган оказался поражен:
- Увеличение лимфатических узлов.
- Гепатоспленомегалия рост размеров селезенки и печени.
- Энцефалит.
- Рост внутричерепного давления.
- Васкулит.
- Незначительные расстройства психики.

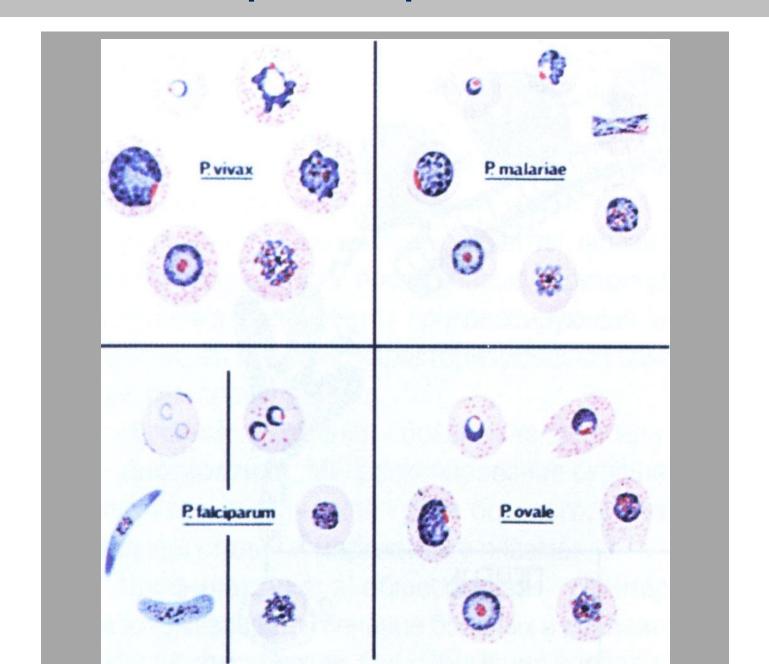
- Незначительные расстройства психики.
- Тахикардия.
- Менингоэнцефалит.
- Головная боль.
- Боль в груди.
- Ложные менингиальные симптомы.
- Сосудистые кризы.
- Тянущая боль при пассивном движении.
- Онемение конечностей, болевая симптоматика.
- Воспаление оболочки глаз.

Диагностика T.gondi

• Паразитологические методы:

1) При остром и врожденном токсоплазмозе:

- Обнаружение токсоплазм в центрифугате сыворотки крови;
- Выявление в пунктате спинно-мозговой жидкости;
- В тканях плаценты;
- В биоптатах лимфатических узлов


2) При хроническом токсоплазмозе:

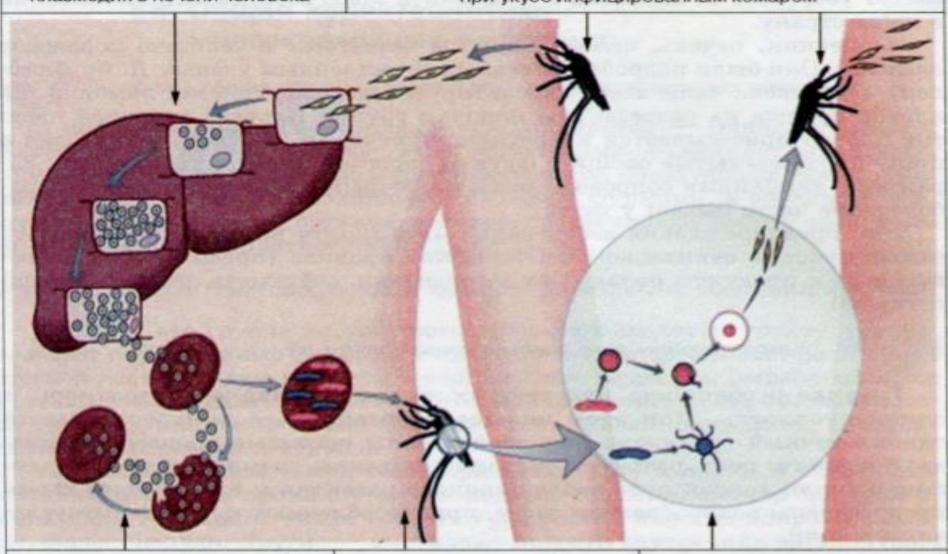
- Иммунодиагностика;
- Биологические пробы для заражения мышей4
- Исследование культуры тканей животных (метод
- Культивирования)

Малярия — паразитарное заболевание, возбудителем которого являются малярийные плазмодии

- Plasmodium vivax возбудитель трехдневной малярии;
- Plasmodium malariae возбудитель четырехдневной малярии;
- Plasmodium falciparum- возбудитель тропической малярии;
- Plasmodium ovale возбудитель ovaleмалярии/
 - Возбудителя малярии человека впервые обнаружил
 - в 1880 году французский ученый А.Лаверан.

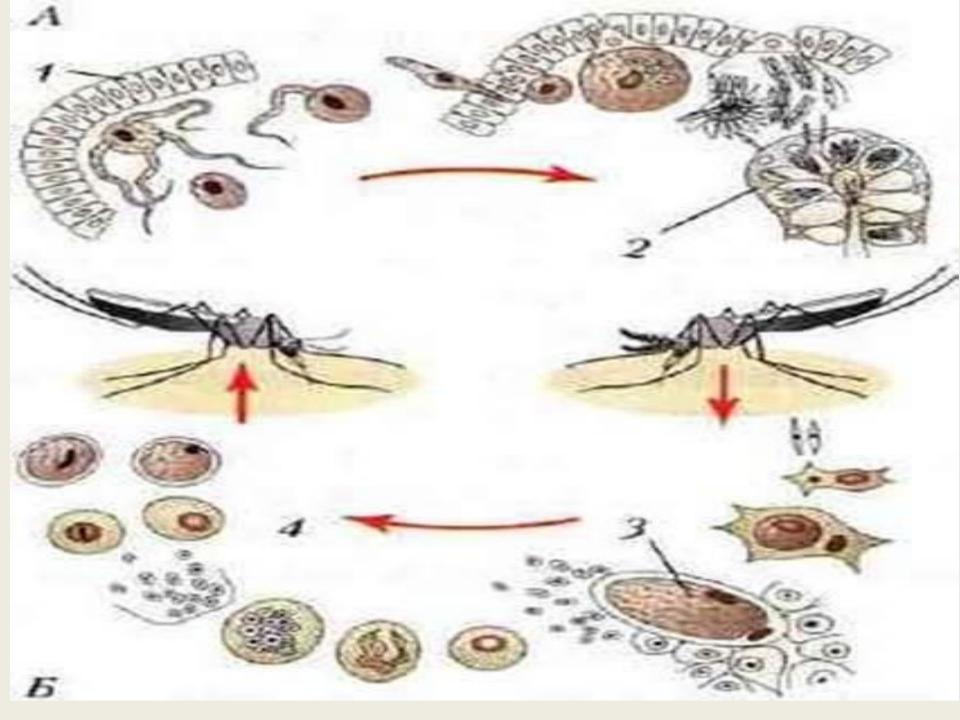
кровоспоровики

Малярию у человека вызывают различные виды плазмодиев:


Plasmodium vivax —малярию 3-х

дневного типа

- Plasmodium malariae -малярию 4-х дневного типа
- <u>Plasmodium falciparum</u>-тропическую малярию;
- <u>Plasmodium ovale</u> -малярию 3-х дневного типа


МАЛЯРИЙНЫЙ ПЛАЗМОДИЙ

Размножение малярийного плазмодия в печени человека Малярийный плазмодий проникает в кровь человека при укусе инфицированным комаром

Размножение малярийного плазмодия в эритроцитах крови человека

При укусе малярийный плазмодий с кровью проникает в тело комара Размножение малярийного плазмодия в теле комара

ЦИКЛ развития малярийного плазмодия

- 1) Все виды плазмодия в *организме* человека проходят бесполое
- развитие *ШИЗОГОНИЮ*: <u>мканевую</u> в печени и <u>эритроцитарную</u> в крови;
- 3)В *теле переносчика* малярийного комара рода Anopheles совершается половое развитие *СПОРОГОНИЮ*;

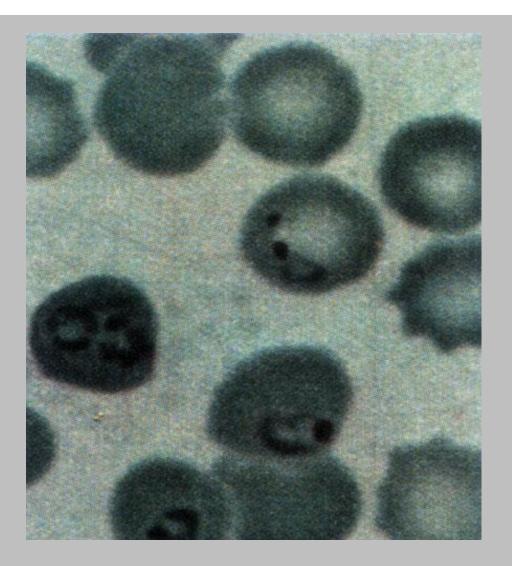
кровь инвазионную стадию малярийного плазмодия-<u>СПРОРЗОИТ</u> веретенообразные, чуть изогнутые формы плазмодия длиной 14-15 мкм

Из крови спорозоиты проникают в клетки печени, превращаются в тканевые шизонты, из которых к 7-9 дню образуется до 10 000 -50 000 молодых паразитов мерозоитов. Это тканевой цикл.

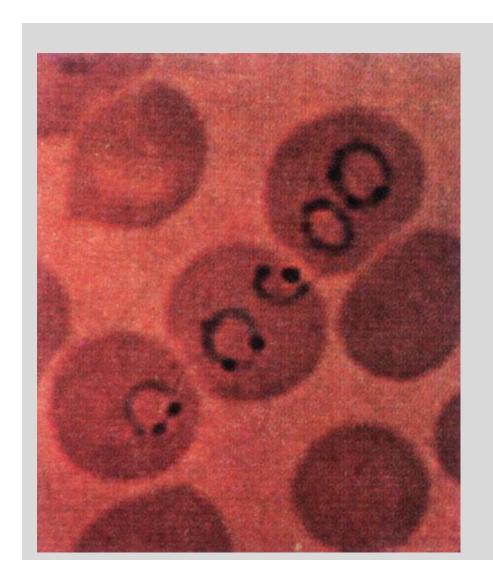
После разрушения печеночной клетки тканевые мерозоиты поступают в кровь и проникают в эритроциты — начинается эритроцитах паразит проходит несколько стадий шизонта:

- 1.-стадия кольца
- 2.-стадия подвижной амебы
- 3.стадия не подвижной амебы Эритроцитарные шизонты делятся, образуя 8-24 кровяных мерозоита. После разрушения эритроцитов мерозоиты поступают в ток крови, проникают в новые эритроциты

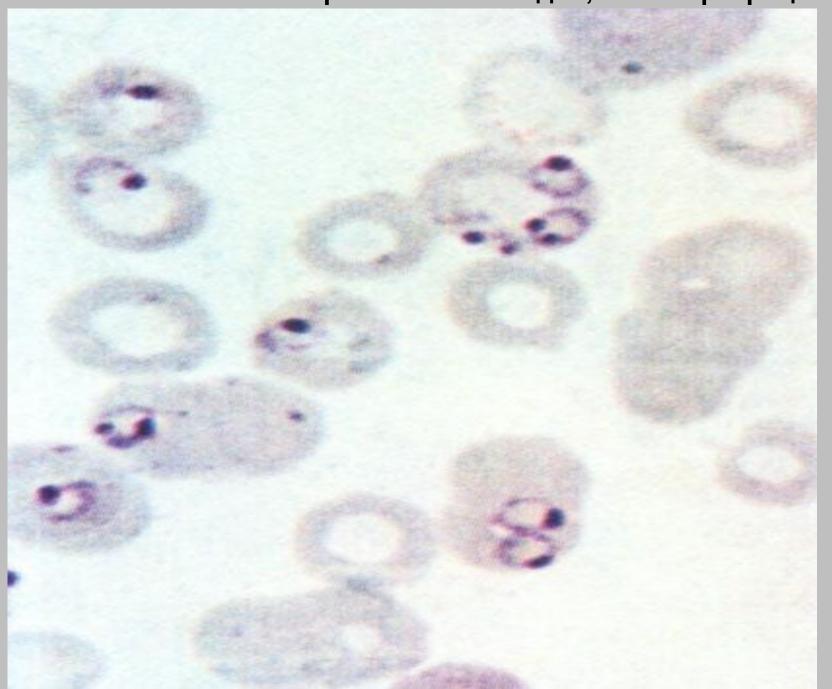
Кроме шизонтов, <u>в части эритроцитов</u> развиваются мужские и женские половые клетки – гамонты.


Комар, кусая зараженного человека, вместе с кровью заглатывает гамонты, в желудке комара они превращаются в зрелые половые клетки-гаметы. Возникшая после оплодотворения клетка — (зигота) проникает в стенку желудка комара, превращается в ооцисту, которая растет, содержимое её многократно делится и при этом образуются тысячи спорозоитов. Весь процесс развития в комаре – от 7 до 45 суток. Спорозоиты проникают в слюнные железы комара и при укусе им человека попадают со слюной через хоботок в ранку.

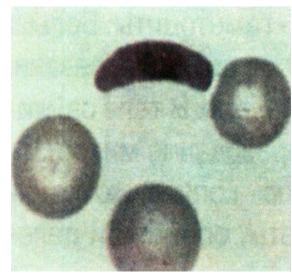
Строение и развитие Plasmodium falciparumвозбудитель тропической малярии


- В мазках из периферической крови обычно не встречаются амебовидные и делящиеся шизонты и морулы, которые развиваются в глубоких сосудах и в капиллярах внутренних органов
- В первые 8-10 дней болезни в периферической крови (ПК) обнаруживаются только кольца.
- Позднее появляются гамонты. Затем кольца исчезают (это совпадает с прекращением клинически выраженных симптомов) и в крови в течение нескольких недель обнаруживаются лишь гамонты.
- Кольца очень мелкие, нежные, занимают до 1/6 части эритроцита. Однако у больных, ранее однократно болевших тропической малярией, они могут быть крупными, по размерам отличаться от колец других видов
- Шизонты появляются в ПК в крайне тяжелых случаях

Plasmodium falciparum

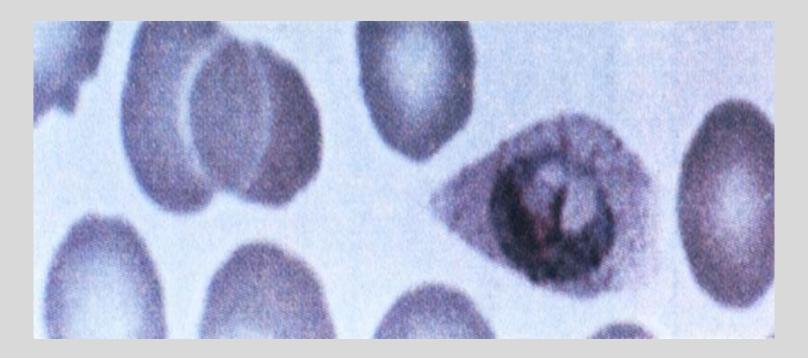

Эритроциты больного содержат кольцевые трофозоиты (шизонты)

Plasmodium falciparum


Тонкие нежные колечки малярийного плазмодия, по 2 в эритроците

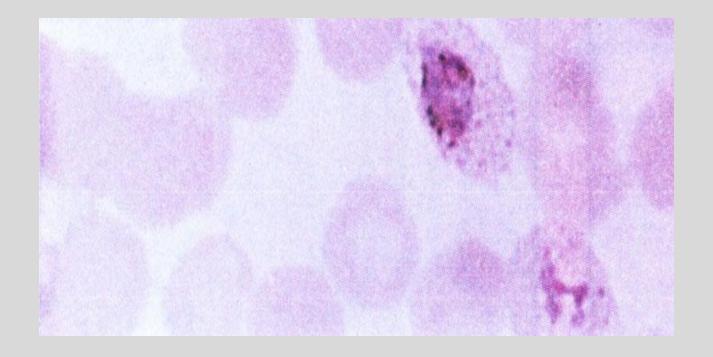
Plasmodium falciparum

слева – женский гаметоцит полулунной формы, справа – мужской гаметоцит формы полумесяца

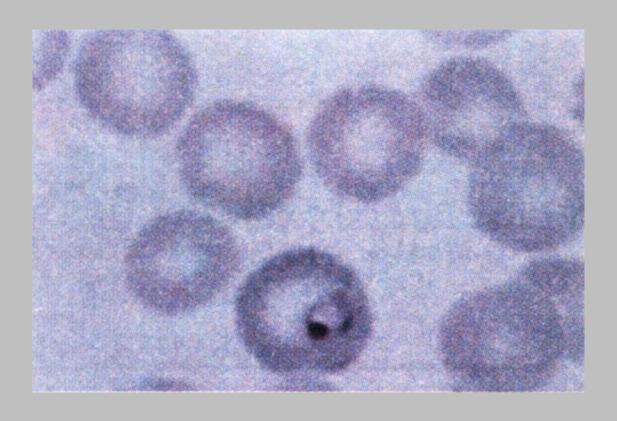


Морфологическая характеристика

- 1) Спорозоиты образуются в желудке комара рода Anopheles в количестве около 1 тыс. из одной ооцисты, проникают в гемолимфу и затем в слюнные железы комара. Это инвазионная стадия для человека. Спорозоиты веретиновидной формы, подвижные. Размеры: 11-15 мкм длинной; 1,5 шириной.
- 2) Тканевые трофозоиты(шизонты) округлой формы, 60-70 мкм в диаметре, находятся внутри гепатоцитов.
- 3) Тканевые мерозоиты(шизонты удлиненной формы, длинной 2,5 и шириной 1,5 мкм, выходят из гепатоцитов в плазму крови.
- 4) Кольцевые трофозоиты (шизонты— первая эндоэритроцитарная стадия, величиной 1-2 мкм в форме перстня

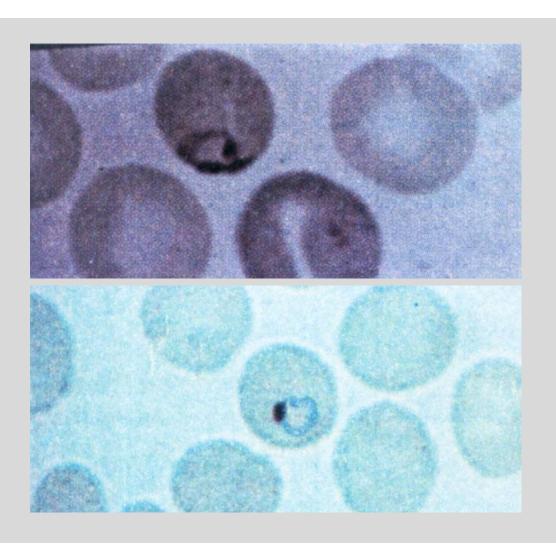

Трофозоиты P.ovale

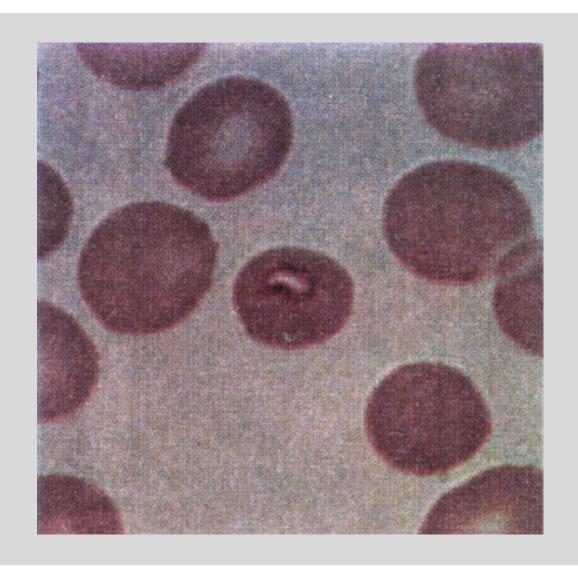
 Мазок крови, пораженные эритроциты измененной овальной формы, на них видны зерна Джеймса (Шюффнера)


Кольцевые трофозоиты P.ovale(шизонты)

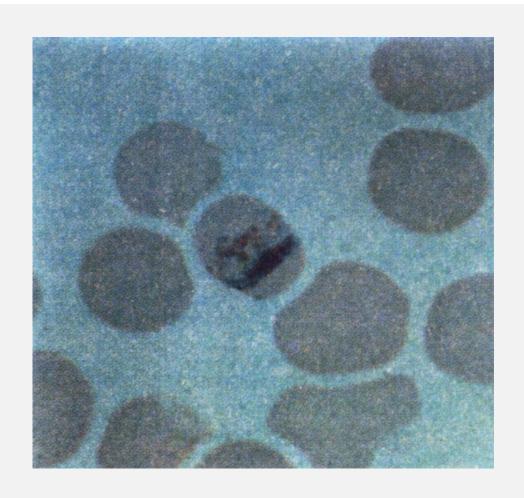
 Мазок крови, пораженные эритроциты измененной овальной формы, на них видны зерна Джеймса (Шюффнера)

Кольцевой трофозоит (шизонты) P.ovale

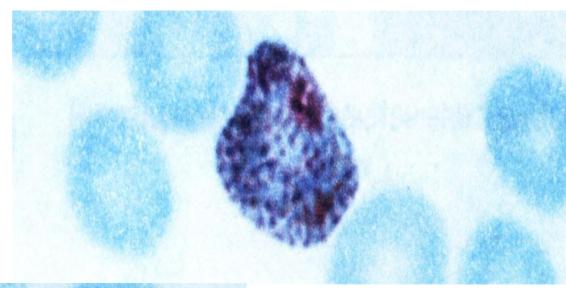

• Мазок крови, окраска по Романовскому - Гимза

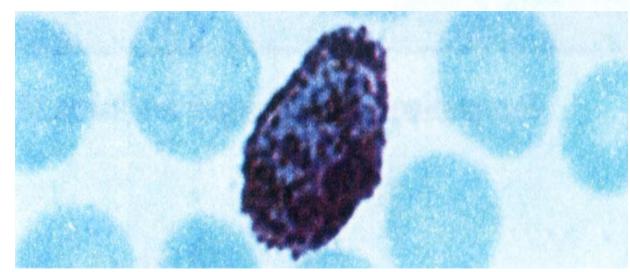

- Шизонты имеют компактную, правильную форму;
- Ложноножки у молодых шизонтов, короткие, не образуют причудливых форм;
- Зрелые шизонты могут приобретать лентовидную форму, располагаясь вдоль эритроцита в виде полоски;
- Ядро не правильной формы лежит на одной стороне ленты, а на противоположной собираются зерна Шюффнера;
- Лентовидные шизонты обнаруживаются чаще по краям мазка, где кровь быстро подсыхает; в центре они успевают приобрести округлую форму;
- Гамонты округлые, небольших размеров, меньше, чем у P.vivax.
- В ПК одновременно присутствуют все стадии паразита,
- Однако какая-то из них резко преобладает в связи с более или менее синхронным развитием.

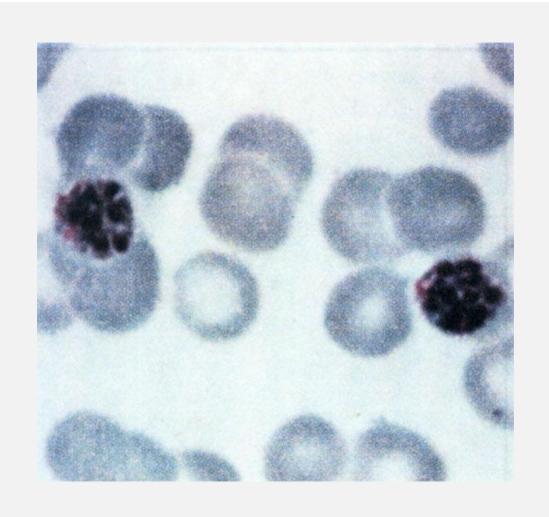
Кольцевидный трофозоит P.malariae


- Мазок крови,
- Эритроциты,
 трофозоит
 в виде перстня

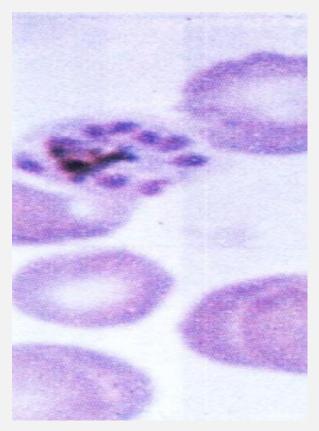
Трофозоит после внедрения в эритроцит (шизонт)

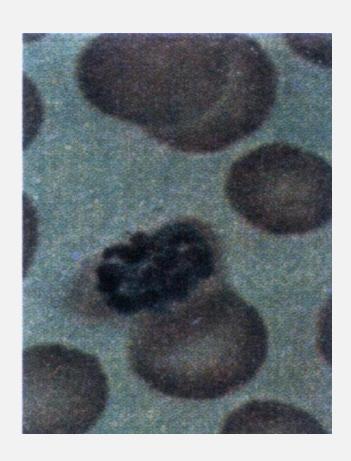



Трофозоит
 P.malariae
 характерной
 лентовидной
 формы.
 Окраска по
 Романовскому
 Гимза

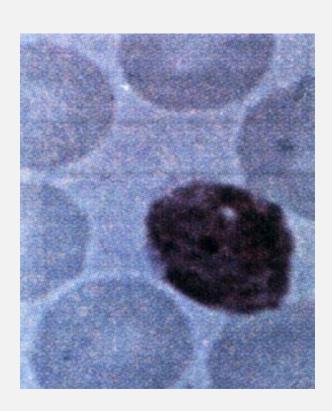

P.ovale, макрогаметоциты

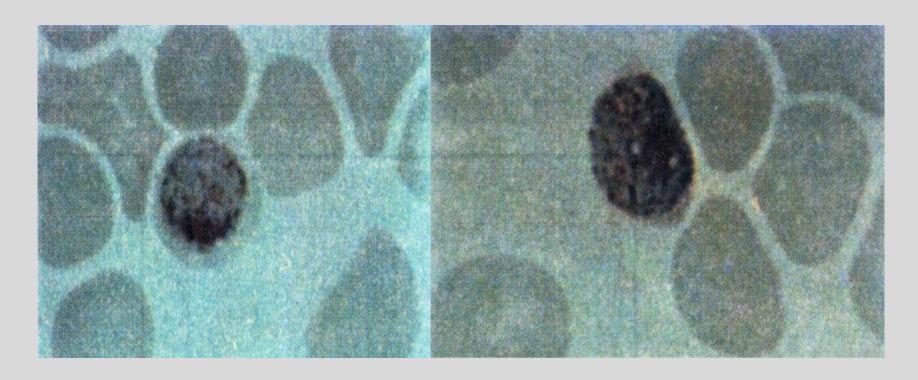
• Мазок крови



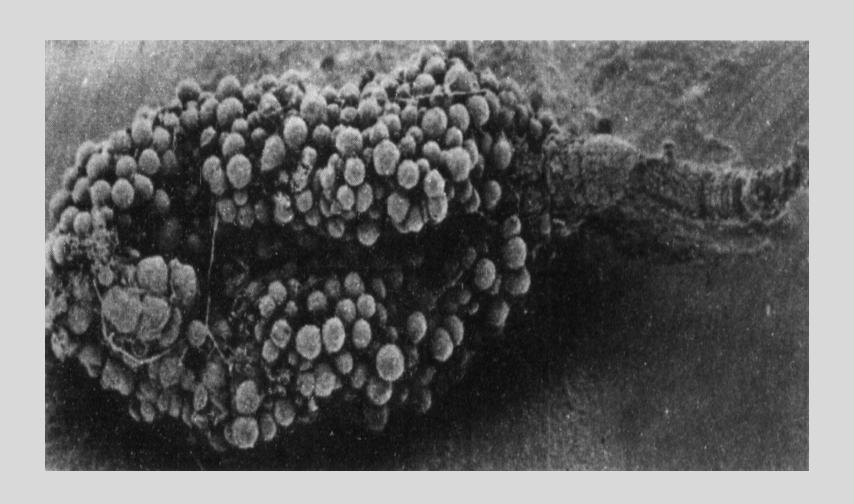

• Шизонт P.malariae на стадии деления. Видна **Шизогония** в эритроците

Шизонты P.malariae


- Шизонт слева 12 мерозоитов
- справа 8 мерозоитов

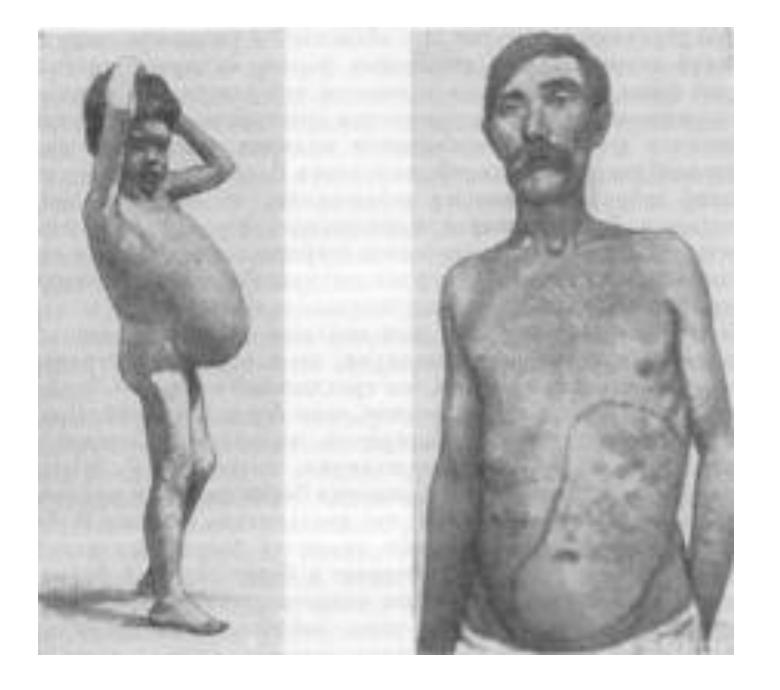

- Микрогаметоцит слева,
- Макрогаметоцит справа

• микрогаметоцит


макрогаметоцит

- Оокинета
- P.malariae
 в кишечнике
 комара
 малярийного

 Ооциста P.malariae на внешней стороне кишечника
 Комара малярийного



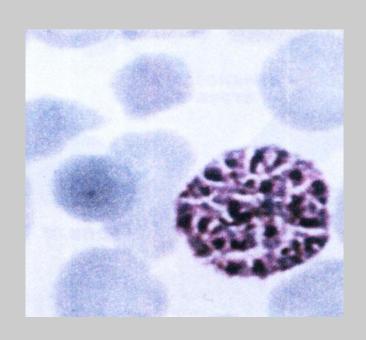
Plasmodium vivax

- Амебовидный шизонт имеет причудливую, неправильную форму за счет длинных, вытянутых ложноножек;
- Морула состоит из 12-18 мерозоитов, расположенных беспорядочно;
- Взрослые женские гамонты овальной, крупнее шизонтов, занимают почти весь эритроцит;
- Мужские гамонты по размеру меньше женских.
 Цитоплазма бледно-голубая, ядро крупное, рыхлое, иногда удлиненное, красится в центре интенсивнее, чем по краям.
 Много пигмента;
- Пораженные эритроциты изменяются: они увеличиваются, бледнеют, появляется обильная мелкая зернистость красного (зернистость Шюффнера);
- В периферической крови одновременно присутствуют все стадии плазмодия.

ЦИКЛ развития плазмодия

- 1) Все виды плазмодия в организме человека проходят бесполое развитие ШИЗОГОНИЮ:
 - Тканевую в печени и эритроцитарную в крови;
- 2) В теле переносчика малярийного комара рода Anopheles совершается половое развитие СПОРОГОНИЯ;
- При укусе человека зараженным комаром в кровь проникают спорозоиты веретенообразные, чуть изогнутые формы плазмодия длиной 14-15 мкм.
- Из крови спорозоиты проникают в клетки печени, превращаются в тканевые шизонты, из которых к 7-9 дню образуется до 10 000 50 000 молодых паразитов мерозоитов. Это тканевой цикл. После разрушения печеночной клетки тканевые мерозоиты поступают в кровь и проникают в эритроциты начинается эритроцитарный цикл.
- С момента Эритроцитарной шизогонии развитие Р. falciparum dв печени прекращается. У остальных видов в кровь выходит только часть тканевых мерозоитов, другая часть мерозоитов продолжает развиваться в печени (поздние тканевые стадии), вызывая в дальнейшем отдаленные рецидивы болезни.

Как выглядит малярия?



Plasmodium vivax

- Микрогаметоцит
- видны гранулы

Шизонт на стадии 22-х мерозоитов

Приготовление препаратов кишечных простейших

В связи с тем, что подвижность вегетативных форм кишечных простейших является важнейшим диагностическим признаком, в процессе микроскопирования нативного мазка очень важно поддерживать условия для проявления этого их свойства.

УСЛОВИЯ:

- 1) Микроскопирование проводить ещё теплых фекалий не позднее 15-20 мин. После дефекации (доставленные в лабораторию Ф. через 2 часа непригодны, так как вегетативные формы к этому времени гибнут и дегенерируют); цистные формы сохраняют свою форму и жизнеспособность при комнатной температуре до 4-х недель, а при + 1-3° С до нескольких месяцев.
- 2) Просмотр мазка проводить в подогретом состоянии t +25-30 ° C; либо предварительно включить в электросеть нагревательный столик микроскопа, либо с помощью электролампы, ориентированной в зону обследуемого объекта

ПЕРЕГРЕВА НЕ ДОПУСКАТЬ!!!

- 3) после выявления цист в оформленном стуле диагноз проверить по обнаружению вегетативных форм, для чего пациенту дают **СОЛЕВЫЕ** растворы (!!!) слабительное или ставят клизму, затем в жидких фекалиях ищут вегетативные формы: лямблий, кишечных трихомонад, хиломаста, балантидиев.
- 4) в ряде случаев просматривать не один а несколько мазков, тем более, что наряду с оформленными фекалиями имеются и жидкие участки с патологическими примесями. С учетом периодичности цистообразования и колебаниями активности размножения в жизненном цикле простейших проводятся повторные исследования фекалий и интервалами в 2-3 дня.
- В ПРАКТИКЕ паразитологических лабораторий диагностику простейших проводят путем исследования в нативном мазке, в йодном растворе и методом приготовления окрашенных постоянных препаратов. Наиболее точные сведения о строении вегетативных форм и их цист дает исследование постоянных (фиксированных) препаратов, окрашенных железным гематоксилином по Гейденгайдену.